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O.Ia. POPOV 

(Odesss) 

Some new ~ropertfes are established for dacobi polgnoudals (8~3, in- 
cidentalls, also for those of Qegenbauer, Legendre and Chebysbslzevf which 
are then used for solving an integral ewation that rapresents a nmber 

of plane contact problems (with contract along an interval) and also 
three-dimensional contact problems with a circular region of contact. 

1. Suppose that the linear integral operator .l transforms 
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Indeed, comparing (1.4) with (1.1) and taking into account (1.3), we 
see that 

m j m 

2 $) 2 &jzk = p,,, 2 Cjm)zj 

j=o k=o j=o 

Ganging the order of summation on the left-hand side of this equa- 

tion, and equating coefficients of like powers of X, we obtain the 

second formula of (1.4) and also the system of equations 

m-1 

By means of these equations we can determine the coefficients of the 

polynomial (1.31, since the determinant of this system is different from 

zero because of (1.2). 

It should be noted that the family of polynomials mentioned will also 

exist when condition (1.2) is violated if the operator L is syrnnetric. 

Starting with system (1.5), one can obtain a formula for the deter- 

mination of the coefficients ck (a). hitting the details, we give the 

final result as 

m-k-2 

fmf 1 
ck = 

ii, - pk ( z: 
j=o 

where 

2. bet us consider the integral operator 

where 

W;,, (GY) = r s"J,A (8~) J, by) ds, W&,,* = Iv,; (2.2) 

("J,(z) is a Bessel function) 

The restrictions which have to be imposed on (2.2) will be given 

later. 
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Expressing the kernel of the operator (2.1) in the form 

K;I:"y (x, y) = “$;I’ , k (z) = zh i s”J, (sz) J,(s) ds (2.3) 
0 

and setting x = ae -5 and y = ae-q, we obtain 

K1: [rpf = ($Jv'Eyl (E - q)ae-~a, (ae-*) dq, 
0 

Let us now make use of the Fourier transformations 

L (u) = 7 Z(t) eiutdt, CD (u) = i ae-ncp(ae-n) e"*udq (2.5) 
-za 0 

Here it is assumed that 9(y) z 0 when y > a. On the basis of the con- 

volution theorem for Fourier transforms, we have 

K,Y [q~] = ( -$)““2+ 1 L (a) cf, ,(u) ef%$tl 
--00 

(2.6) 

Evaluating the first integral in (2.5) by the same method that was 

used in [XI, we find that 

L(u) = r (l/a [p + v + h + e - iul) r (l/2 [1 + T - ?b - E + iul) 

21-T (1 + l/2 [p - v - h - 8 + iu]) I- (‘/? [ 1 + y + h + & - iu]) (2.7) 

If one assumes that 
(2.8) 

cp (x) =: x2m+ptX+s (2 - x2)-” = (Pm (2) (0 = Ii2 - I/2 v, In. = 0, I,& . , . ) 

then it is not difficult to evaluate the second integral of (2.5) 

r(i--)r(~+~/zfl$-~+I+E--~l) 
Q,(u)= _ _--_ 

Taking into consideration this last formula and also (2.7) and (2.6) 

with p = y, we obtain the next formula 

KL [qrnl = 
e(v+@ 9 (I - (I)) i 

22-va-2nl-p-A FP 

X 
M r(‘/2[1$~--_-&++iU])(‘/2[1fIl.+hfE--iu]),,e-iU~ du 

5 r it + ‘ia [p - k - e + 4) pi2 1~ -t Y + k + ~-w,+~ 

(a)*-= r-1 (a) I? (a + n) = a (a + 1) (a + 2) - . . (a + n - 1) 
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'Ihe last integral is equal to the sum of the residues and hence 

K’,‘” fql,(2)] = u2m+t*+h i k &$542k+p+h) f 

k=o 
(2.9) 

ak(m) zzz 
(0 - 4, r (I- 0) r (i+ k - CJ + PL) 

(-l)k21-‘k! (m - kc)! I. (1 + k + ~1) 
(2.10) 

Finally, setting s = 1 - 2h, x = at, y = aT, and taking into con- 

sideration (2.1) and (2.R) in place of (2.91, we derive 

Ii* IP (t) PI = p (t) i UJpf P” 
k=o 

(p (l) = tl*+h) (2.U) 

where 

l (t+i’,’ (at, a-c-) J! (T) dz 
L*q= ,1+.\ ,zl--v 

+1 (1 - $)a 2 
(2.12) 

0 

'Ihe performed operations that led us to relation (2.11), may be 

justified if one assumes* that 0% v < 1, - 1 < p = y < m. 

In accordance with Section 1, the characteristic numbers of the 

operator (2.12) are given by the formula 

Pm = 
(-l)“Z”-‘nr (1 + m + p - 0) 

sin nom! r (1 + m + II) r (6.1 - m) 

obtained from (2.10), and its characteristic 

form 

(m = 0, 1, 2. . .) (2.13) 

functions yrn will have t;he 

gm (6 = tB+$, (t2) (2.14) 

Here the coefficients p,(x), given by the formula (1.31, can be de- 

termined with the aid of formulas (1.6) and (2.10). 

However, in our case this determination is not necessary, since the 

indicated polynomials are related quite simply to the Jacobi polynomials 
P W)(x). To show this, we note first of all that the operator (2.12) 

cL be transformed into a symmetric one by a well-known method E3, p.lllI 

The characteristic functions of the symmetric operator will be 

* The referee of this work, N.A. Rostovtsev, pointed out that relation 

(2.11) can be obtained from his theorem on an elliptic stamp [21. 
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orthogonal to each other, which in our case is equivalent to the &I.- 
fillment of the requirements 

The change of variables 

21” = 1 - 2, p** ICE) = pin fVz 

transforms (2.15) into 

- 

(2.15) 

These ortho onality conditions are, 
Y 

however, satisfied by the Jacobi 

polynomials Prp vv-w'(x). Hence, on the basis of a well-known theorem 

r4, p.10373, we can conclude that 

pm” (x) = B,P,‘“* -@) fx), pm (t”) = ~m~m(~, -) (1 - 212) (B, = constf 
(2.16} 

Taking into account (2.11) to f2.1~9, we now arrive at the funda- 
mental conclusion that 

L* [PPmP (t)] = pmt”+hPmw (t) (oqt<l) (2.17) 

where 

S. Let us now 
tion (2.171, and 

&e begin with 

Pm” (t) = P,(~~ -4 (1 - ‘32) (2.18) 

consider the more interesting particular cases of rela- 
also some of their consequences. 

the cases when p = v = h = 0; noting first, that on r 7 
the basis of formulas 8.362 (f) and 8.911 (2) of 144, we have the 
following relations: 

p (0. -“h) 
m ( * - 2x2) = Pgln (14 - 2”) (Pm ( 1 z is a Legendre polynomial) (3.1) 

From (2.17) we obtain with the aid of (2.12), (2.13) and (3.11, the 
equation 



which agrees with the results of ffd, where a direct proof of relation 

(3.2) was given. 

77&e case p = It l/2, A = l/2. First of all we note that 

In order to prove this, one must take into account (2.2) and also 

formulas 3.762 and 8,443 of f4?1. Let us also note that formulas 8.962 

flf and 8.932 (3) of [41 yield the following relations: 
(3.4) 

Taking into account (2.12) and (2.131, let us set CI = r l/2, h = l/2 

in (2.17). Then using (3.3) and (3.41, as well as certain well-known 

properties of the gamma functions, we obtain 

(0 < z < 1, C+Q = c2g, CP = czmtla, n, = zm, R_ = 2m + I, m = 0, 1, 2, . . .f 

As a direct consequence of this we find that 

I. 

s 6nvi2 (Y 1 dy nW+t-v) 
15 -y 1” r/cl -$#-" = co5 l/avnr(v)ml 

c$a (z) (IZ~<U (3.6) 
-1 

From the left- and right-hand sides of (3,6) we next subtract the 

~~~~,~~~~igh~-h~d sides, respectively, of the following equation 

I- f’iav) 1 s “;‘“,‘r’_ (.jy = { 2 v-hr (Y2 -E_ ‘/zY)v-2 (m = 0) 

V 
-1 Ir, - 2 1 y 

o 
(m = 1,2,3, . ” .) 

After this we let v -* 0, and make use of [4, p.10441 

Iii; r (“/& C,‘” (z) = 2 T,(z) (T,,(r)is a Chebyshev PoWKMal) 

and also of 
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As a result of the indicated operations we obtain the known relation 
t63 

In the derivation of the consequences of relation (2.17) we shall 
make use of a known theorem [7, p.2631 on the representation of a kernel 
of a symmetric operator as a series of products of orthonormai character- 
istic functions. After the operator (2.12) has been symmetrized by the 
procedure mentioned (3, p.1111, its orthonormal characteristic functions 
will be given, on the basis of (2.14) to (2.17), by 

t&t h r 2 II-~+ i- P -dmt r (I + m + p -+) tl_aa If% 
r (1-k m -$- ptf J? (I+ m - of (1 - t*)u’ 1 Pm” @f (3.9) 

Here we have made use of formula 7.3911 from E4I. We thus have ob- 
tained from relation (2.17) and from the theorem mentioned, the follow- 
ing expansion: 

As particular examples of this, or as a consequence of relations 
(3.2), (3.5), (3.6) and (3.8), we obtain the following expansions: 
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We note that these series, as well as the series in (3.10), are con- 

vergent in the mean [71. 

4. Let us now consider the integral equation 

a 

s K ,,.““(z,Y)‘P(Y)dy=f(s) (0 <x d 4) 
0 

(4.1) 

Certain contact problems in the theory of elasticity can be reduced 
to this integral equation when y = ~1 = n, E = h = 0 (see [1,5,81). These 

contact problems involve circular contact regions (v = 0) in the form 

of a usual half-space, or half-spaces with a variable (by the power law) 

modulus of elasticity (v f 0). 0th er contact problems covered by this 

equation belong to the nonlinear theory of plasticity (in their first 

approximation) with the same type of contact regions. 

We shall show that the above-mentioned plane problems can also be 

reduced to the integral equation (4.1). 

hutiunian [91 has shown that the plane contact problem of the non- 

linear theory of plasticity (in its first approximation) 

to the integral equation 

n 

s 

1 

_a I z --Y I” 
P” ($4 &I = f (4 (I ZIG41 

can be reduced 

(4.2) 

L.A. Galin has reduced the contact problem of elasticity theory in a 

half-space with a modulus of elasticity that changes according to a 

power law to the same integral equation. 

If one denotes by p+*(x) the solution of equation (4.2) for the even 

right-hand side of f+(z), and by p_*(x) the solution for the odd right- 

hand side f_(x), th en it is obvious that the finding of the solution of 

equation (4.2) is equivalent to solving the following two equations: 

Taking into account (3.3) and (2.1)) we can now conclude that the 

above-mentioned plane contact problems for the symmetric case can be re- 

duced to the integral equation (4.1) with y = p = - l/2, A = l/2, E = 0, 

and for the skew-symnetric case to the same integral equation with 

y = M = l/2, h = l/2, E = 0. 

In regard to the plane contact problems for the ordinary half-spaces, 

which, as is well known [lOI, are equivalent to the following integral 

equations: 



it can be said that they also are covered by 
solutions, in view of (3.77, can be obtained 
the solutions of equation (4.31, 

equation (4.1) since their 
by the limit- process from 
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‘lllus the application of relation (2.17), and its special cases, makes 
it possible to obtain the solutions of the above-mentioned contact prob- 
lems in the form of power series in terms of classical polynomials. This 
type of solution will be used in Section 5. 

Here, however, we shall construct the solution of the integral equa- 
tion (4.1) in the form of quadratures. At the same time we shall obtain 
a general formula which will express the solutions of spatial contact 
problems with a circular contact region, as well as plane problems with 
an interval of contact. 

First we note that equation (4.1) can be reduced to an integral equa- 
tion of the Wiener-Hapf type of the first kind. Tndeed, setting in (4.1) 

(4.5) 

zz = CM-E, ?J = WY*), ip (UC-E) ae-5 zz x (j), f (a&) @J+~~-WE) e = g(E) 

and taking into account (2.3), we obtain 

co 

s 1 (E - 4 x h) f-h = g (5) (oGt<<) (4.6) 

0 

where E(c) is given by the second formula of (2.4). 

In order to obtain the solution of equation (4.6), it is sufficient 
to obtain one for the more simple equation [ll 

and then make use of the formulas 

--a) 0 

Utilizing the method described in [l] for the solution of equation 
(4.7) (compare also CSI 1, we are led to the equations 
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After obtaining the solution x ($1 of equation (4.6) for a special 
right-hand side, one can derive I! t e solution for the general case with 

the aid of formula (4.8). However, it is more convenient to use for 

this purpose the known result of Krein 1113 (compare also [ljf. In view 

of (2.1), equation (4.1) can be written in the form 

s W p,yv (G Y) (P” (Y> dy = f* (4 (0 < x q a) (4.10) 

0 

where 

cp” (2) = 39-y (cc), f” (x) = r-hf (2) 

ft can be shown that the function ~~(x)xlh-s is a sofution of equa- 

tion (4.10) when 

and the solution of the integral equation 

is, therefore, given by the formula 

of 

be 

must interchange the parameters n and y. 

Taking note of (2.2f, it is not difficult to see that the solution 

the integral equation which is the adjoint equation of (4.111, will 

given by the same formulas (4.9) and (4.12). Hereby, however, one 

Having obtained the solution q y(y; a) of the integral equation 

(4.11), and the solution 'ir '.L(y; a Y 
struction of the solution zf (4.10) 

of the adjoint equation for the con- 

or (4.1) with arbitrary right-hand 

sides, one can make use of the formulas of Krein [Ill. These 
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computations yield (see [II > the result* 
21-v2Y+A+E 

’ (2’ = r (‘/a [I + P -r + VI) r P/a [I - p -!-‘I + ~1) 
@ (4 

j,Ftaa _ x2)1-p+y-v - 
(4.13) 

a a 
W(u) du sl+p-‘f (s) ds 

- 
I/@a _ 52)1-P+Y-” ’ j/(a2_ s2)l+P-Y-~ 

The formal procedure for obtaining formula (4.13) can be justified 

if one assumes that O<v<l, 1~ - ~1 < 1 +.v, and if one requires that 

the function x’+@‘f(zx) be continuous in O<xQl. 

Substituting the appropriate values of the parameters in the derived 

formula (4.131, one obtains the solutions of the contact problems 

mentioned at the beginning of this section. For example, in order to 

obtain the solution p+*(x) of equation (4.2) with an even right-hand 

side, one must set y = u = - l/2, h = l/2 and E = 0 (taking note of 

(4.3) and (3.3)). 'Ihis yields 

a 
P-* cos l/a vnr (Y) 

p+* (%) = nr2('/2-t1/29 j/f+_ ql-" -T qu2__2)1_" i’ Q)(a) ’ I a’ (u) du 1 (4.14f 

dq 
g, (a) = al-"& 

J 

f+ (4 ds 

o f/a2 - s~)~-” 

which coincides with the result obtained by Arutiunian t91 if one 

corrects the error in his result where the factor l/2 was omitted in 

the formula for M(a). 

Let us also find the solution of the plane contact problem for the 

ordinary half-space, i.e. the solution of the integral equation (4.4). 

If one takes into account equation (3.'7), one can show that 

(4.15) 

* The integral equation (4.10) with v = y has been solved also by N.I. 

Ahiezer and V.A. Shcherbin [121, and independently of them, by V.I. 

Mossakovskai and N.A. Rostovtsev [21 (with a kernel different from 

the one used here). The solution methods of these authors can be ex- 

tended also the case when fi f y. The advantage of the method given 

here lies in the fact that it yields the solution of (4.10) or (4.1) 

even in the case when (2.2) contains products of functions of a more 

general type than JP(x), and also when the kernel is the sum of 

functions of the type (2.2). 
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where pVi(.x) satisfy the following equations: 

1 

(x + Y)" 1 
P,’ (Y)~Y = TV* + d, (4 (4.16) 

a 

TV+ = 2 
s P,+ (~1 dy, ry- = 0 
0 

'Ihe solutions of these equations ar', however, easily found hy the 

use of the general formula (4.13). C.~tting the details, we give here 

the final results 

p* (4 = $- 
-if 

@+ 64 -&&g-J &-g2xg} 
0 

P_(X) =$ [ 
CD._ (a) “CD_’ (u) du 

l/aZ_-_/-1/+8 s I 
a>*(a) & f, (4 ds 

(4.17) 

The obtained solution p+(x) for the syametric case can easif be re- 

duced to the form found by Rostovtsev [lo], and by Krein [11,13 7 , 

5. Let us apply relation (2.17), obtained in Section 2, to contact 

problems with bases of general type introduced in [I, 5,61. In the last 
one of these works it is shown that the contact problem with a circular 
contact region can be reduced to the integral equation 

a 

s K, (2, Y) YPn* (Y) dY = g,* (4 (0 < z < a, n = 0, 1, 2 . . .) (5.1) 
0 

where 

m 

K, (s, Y) = \ G (8 J, (M J, (tY) dt (5.21 
0 

The function G(t), whose form is determined by the type of the basis 

(contact region). has the asymptotic property 

G 0) = t’[-l + o(l)l, t+m (5.3) 

On the other hand, the plane contact problem with a contact interval 

(-a, a) can be reduced, in accordance with 161, to the integral equation 

1 a 00 

-ii- 5 v (z - Y) P* (~1 dy = g* (4 (I 2 I < Co, v (t) = 5 G (t) cos tz $ 
-a 0 
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By separating the plane contact problem into the symmetric and skew- 

symmetric parts, we can reduce the last integral equation, by the method 

used in (4.2), to the form 

Let us introduce the equation 

01 

5 
K, (~9 Y) (zY)’ YCP (Y) dy = f (I) (0 < 2 < a) (5.4) 

0 

It is easily seen that it is general enough to include the contact 

problems with circular contacts 

Pn* (z) = IV (4lh), I”=n (n = 0, 1, 2, , . .) 

as well as plane problems (with one contact area) 

For the approximate solution of equation (5.4) we shall use the method 

of 151, which is based on the separation of the singular part from the 

kernel and on the approximation of the remaining continuous part by 

means of polynomials. 

Taking into account the asymptotic property given in (5.3). we can 

express the kernel (5.2) in the form 

N 

K, k Y) = W,” (2, Y) - by)” 2 AkMk b, y) (5.5) 
k=o 

where the singular part is determined by formula (2.2), while the con- 

tinuous part is approximated by the partial sum of a series of poly- 

nomials of the type 

M, (tc, y) = i ak,x2(k-j)y2i (k = 0, 1, 2 . . .) (5.3) 
i=o 

Substituting (5.5) into (5.4), and setting 

2 = a& Y = arl, a1-v+2Aq (aE) = x c&j 

we obtain in place of (5.4) the following approximate equation: 

a’+‘\ [Wpv (4, a3 - ($)’ fl, 4Mk @Et arl) 1 (fqhx @I) dtl = f (a5) (0 < E Q 0 
0 (5.7) 
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whose solution we shall try to find in the form 

x (q) = ; YmqPhPmk (9 l-v 

m=o (1 - r12Y 
@) = __& (5.9) 

In order to find the unknown coefficients Ym we substitute (5.8) 

into (5.7) and make use of relation (2.17). Next. using the orthogonality 

of the Jacobi polynomials, we integrate each term of equation (5.7) with 

respect to t over the interval (0, I) with the weight 

E i+p-), (1 - %y)Pf (%) 

and derive 

N-L iv 
h,Y,-- ~ll+‘+~P 2 Y, x A,a2kBmk(1’ = fr (I =I 0, i, 2 . . . N) (5.9) 

m=o max(m, Z) 

Y, = h,-‘f, P’ d l< m) 

where 

A. _ 2-r* (1 + 1 - 0) 
I- Z!2 (1 + 2z+ p - 0) ’ 

l %1+2R+21LPkp (%) 

s { 

k--E 

B,,(l) = 2 akjbk_j(‘)bj(‘@ 
j=m 

0 (k> a) 
b,tkf -_ d% = (-@rs! r(~+~+~)r(~+k-~) 

o (1 - E3” 
k! (n -k)fZI’(2+k+n+~-m) tk<d 

(1 = 0, 1, 2 . . .) 

In the evaluation of the integral which determines 

the substitution 1 - 2c2 = x, 

b, (kt we have made 

and then made use of formula 7.391 (4) of 

[41. It is important to note that system (5.9) has a triangular matrix 

of coefficients. 

In addition to finding the solution of equation (5.7) in the form of 

an infinite series (it will be a series only if the right-hand side is 

not a polynomial) one can find it also in the form of quadratures by 

using the same arguments as those used in Section 4 of [51. 

It is helpful to note that if one uses the procedure described in 

that work for the approximation of the kernel (5.2) in the form (5.5), 

then one must set 

k! r(l + k + IL) 
akj = j! (k -i)! r (1 + k-i + p) r (1 + i + p) ’ 

(-l)kcg;+EL) 
Ak = 4k+‘k! r (1 + k + p) 
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in 

A A 

c 
r 
(4 = s [b - G(s)]s”ds b=-l,O, 1,2.. .), 

A' - 1 
CJ”) = 7 - s G (4 Tdt 

0 0 

equation (5.9). 

The number A has the same meaning here as in the cited work. 

Obviously, this method (which is convenient to use when the function 
G(t) converges rapidly to tv as t - m) is not the only one for obtaining 
an approximation of (5.5). 

We note also that in some instances it may be advantageous not to ex- 
pand the continuous part of the kernels (5.2) into a series of poly- 
nomials of the type (5.6). but to express it as a double series of 
Jacobi polynomials (or in special cases as series in Gegenbauer, 
Legendre or Chebyshev polynomials). 

6. The expansions obtained in Section 3 are useful for solving Certain 
integral equations of the second kind. We shall show this by means of 
[141 

Denoting the solution of equation (6.1)) when f(t) E 1, by x(c), we 
substitute into it the expansion for the logarithm (Section 3). Sy term- 
wise integration we obtain 

x (5) = I- 2 5 X,T (8 x (~1 T, @) dz 1 (6.2) 
Wl=l -1 

Multiplication of both sides of the last equation by T,(t), and inte- 
gration, yield the following infinite system 

nX,==c A,o- (n = 1, 2, 3, . - . cm) (6.3) 
m=1 

A nm=O (n3_?72=1, 3,5,. . .). 

A nm = [I -(m + n)2]-‘+ [l - (m - n)z]-1 (n + m = 2, 4,6,...) 

Having considered an even system (6.3), i.e. the case when n = 2q, 

and an odd system when n = 2q - 1, one can show that 

(q = 1, 2, 3,. . . CO) 

Taking into account this last equation. we can easily obtain the 
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condition for the regularity of the infinite system (6.3) in the form 
C < 1%~. Having found the approximate solution of system (6.3) (for 
example by terminating these expansions at a certain place) we have ob- 
tained an approximate solution also for the integral equation (6.1) 
with f(c) E 1. The solution of the integral equation with any right- 
hand side is not difficult to find now with the aid of formulas given 
in [ill. 

In conclusion the author wishes to express his gratitude to N.A. 
Rostovtsev for a number of valuable suggestions which were made in the 
process of refereeing this work. 
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